Minerals: Building Blocks of Rocks Chapter 1

WHAT IS A MINERAL?

- Do we need Minerals? What for?
- Name something made from Minerals
- How to go from Elements to Minerals to Rocks?
- Can we live without Minerals?

Minerals are building blocks of rocks

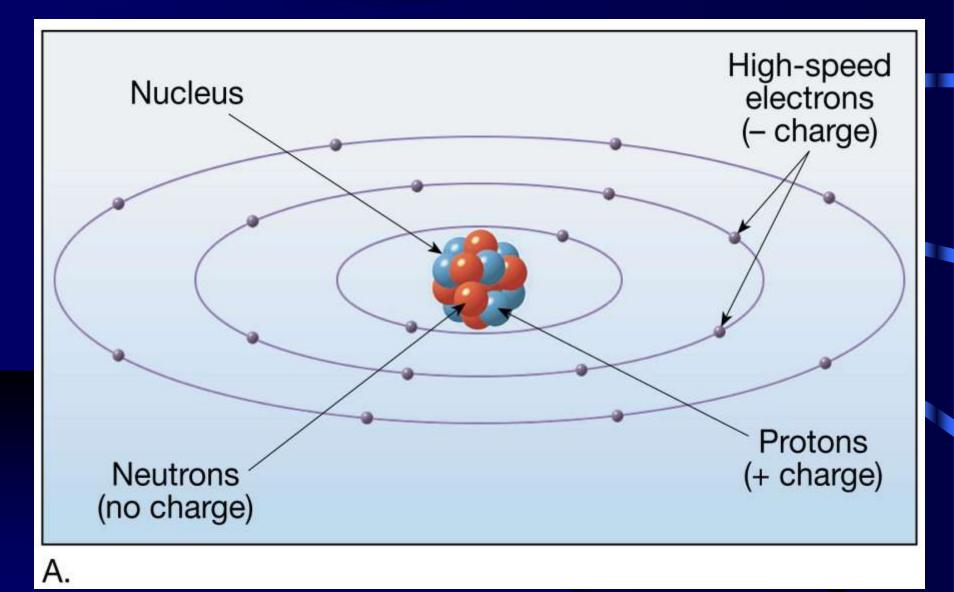
A. Mineral Definition

- 1. Natural not man made
- 2. Inorganic not a living thing
- 3. Solid like a rock
- **4. Crystalline structure** (internal order of atoms)
- 5. Definite chemical composition
- B. Mineraloid is a mineral that lacks a crystalline structure
- C. Rocks are aggregates of minerals

Minerals are Made of Chemical Elements (Atoms)

A. Elements

- 1. Basic building blocks of minerals
- 2. Over 100 are known
- B. Atoms
 - 1. Smallest particles of matter
 - 2. Have all the characteristics of an element


Periodic table of the Elements

1	1 H 1.0080 Hydrogen	IIA				Atomic	: numbe	r	Me	tals nsition r	netals		ША	IV A	VA	VIA	VIIA	VIII A 2 He 4,003 Helium
2	3 Li 6.939 Lithium	4 Be 9.012 Beryllium		4	.003	Atomic	ol of eler weight	1	No No	nmetals ble gase nthanide	es		5 B 10.81 Boron	6 C 12.011	7 N 14.007 Nitrogen	8 0 15.9994 Oxygen	9 F 18.998 Fluorine	10 Ne 20.183 Neon
3	11 Na 22.990 Sodium	12 Mg 24.31 Magnesium	ШB	IV B	VВ	VI B	VII B		VIIIB	inide se	eries B	ПВ /	13 Al 26.98 Aluminum	14 Si 28.09 Silicon	15 P 30.974 hosphorus	16 S 32.064 Sulfur	17 CI 35,453 Chlorine	18 Ar ^{39.948} Argon
4	19 K 39.102 Potassium	20 Ca 40.08 Calcium	21 Sc 44.96 Scandium	22 Ti 47.90 Titanium	23 V 50.94 Vanadium C	24 Cr 52.00 Chromium 1	25 Mn 53.94 Manganese	26 Fe 55.85 Iron	27 Co 58.93 Cobalt	28 Ni 58.71 Nickel	29 Cu 63.54 Copper	30 Zn 65.37 Zinc	31 Ga Galium (32 Ge 72.59 Semanium	33 As 74.92 Arsenic	34 Se 78.96 Selenium	35 Br 79.909 Bromine	36 Kr ^{83.60} Krypton
5	37 Rb 85.47 Rubidium	38 Sr 87.62 Strontium	39 Y 88.91 Yttrium	40 Zr 91.22 Zirconium	41 Nb 92.91 Niobium M	42 Mo 95.94 lolybdenum	43 Tc (99) Technetium	44 Ru 101.1 Ruthenium	45 Rh 102.90 Rhodium	46 Pd 106.4 Palladium	47 Ag 107.87 Silver	48 Cd 112.40 Dadmium	49 In 114.82 Indium	50 Sn ^{118.69} Tin	51 Sb 121.75 Antimony	52 Te 127.60 Tellurium	53 126.90 lodine	54 Xe 131.30 Xenon
6	55 Cs 132.91 Cesium	56 Ba 137.34 Barium	57 TO 71	72 Hf 178.49 Hafnium	73 Ta 180.95 Tantalum	74 W 183.85 Tungsten	75 Re 186.2 Rhenium	76 Os 190.2 Osmium	77 Ir 192.2 Iridium	78 Pt 195.09 Platinum	79 Au 197.0 Gold	80 Hg 200.59 Mercury	81 TI 204.37 Thallium	82 Pb 207.19 Lead	83 Bi 208.98 Bismuth	84 Po (210) Polonium	85 At (210) Astantine	86 Rn (222) Fladon
7	87 Fr (223) Francium	88 Ra 226.05 Radium	89 TO 103	57 LA 138.91 Lanthenu	58 Ce 140.12 m Cerlum	59 Pr 140.91 Praseodymiu	60 Nd 144.24 um Neodymiur	61 Pm (147) m Promethium	62 Sm 150.35 Samarium	63 Eu 151.96 Europium	64 Gd 157.25 Gadolinium	65 Tb 158.92 Terbium	66 Dy 162.50 Dysprosiur	67 Ho 164.93 Holmium	68 Er 167.26 Erbium	69 Tm 168.93 Thullium	70 Yb 173.04 Ytterblum	71 Lu 174.97 Lutetium
				89 Ac (227) Actinium	90 Th 232.04 Thorium	91 Pa (231) Protactiniu	92 U 238.03 Uranium	93 Np (237) Neptunium	94 Pu (242) Plutonium	95 Am (243) Americium	96 Cm (247) Curium	97 Bk (249) Berkelium	98 Cf (251) Californiur	99 Es (254) T Einsteiniun	100 Fm (253) Fermium	101 Md (256) Mendelevium	102 No (254) Nobelium	103 Lw (257) Lawrencium

Atomic Structure

- A. Nucleus central part of an atom that contains
 - 1. Protons positive electrical charges
 - 2. Neutrons neutral electrical charges
- B. Energy levels, or shells
 - 1. Surround nucleus
 - 2. Contain electrons negative electrical charges

Simplified view of the atom

How atoms are constructed

C. <u>Atomic Number</u> is the number of protons in an atom's nucleus = Charge of the Atom

D. Bonding of atoms

1. Forms a compound with two or more elements.

2. Ions are atoms that gain or lose electrons.

Ions Atoms that have gained (Anion) or lost (Cation) one or more electrons

How atoms are constructed

Isotopes

- Have different mass numbers the sum of the neutrons plus protons (atomic weight)
- Many isotopes are <u>radioactive</u> and emit energy and particles

Minerals

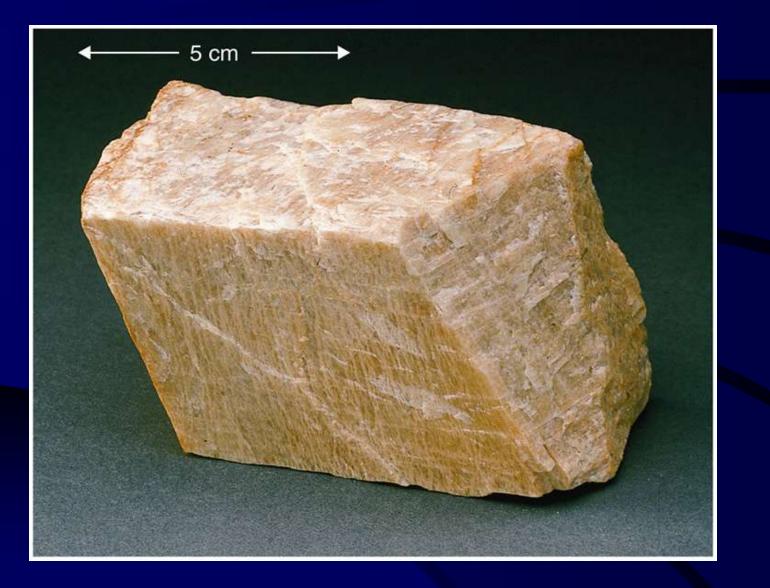
- A. Physical properties of minerals
 - 1. Crystal form the internal structure of a mineral defined by its atomic arrangement.
 - 2. Luster how a mineral sample reflects light Metallic or Nonmetallic
 - 3. Color simply the color of a sample. Many mineral varieties appear as different colors.
 - 4. Streak the color of a mineral's powder
 - 5. Hardness the resistance of a mineral to be scratched by another mineral Scale of 1 10

TABLE 2.2 Mohs Scale of Hardness

Relative S	Scale		ardness of Some Common Objects			
Hardest	10 9 8 7 6	Diamond Corundum Topaz Quartz Potassium Feldspar				
	5	Apatite	5.5 Glass, Pocketknife			
	4	Fluorite				
	3	Calcite	3 Copper Penny			
	2	Gypsum	2.5 Fingernail			
Softest	1	Talc				

What are the two minerals your fingernail can scratch?

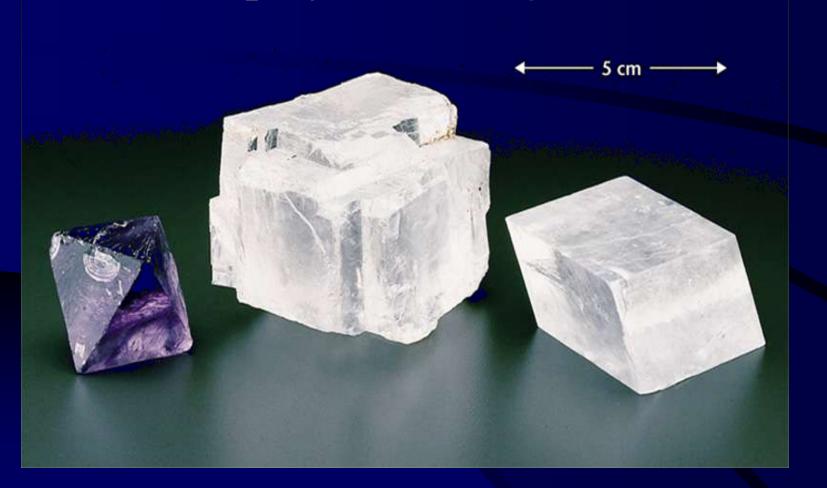
1. Calcite and Gypsum


2. Gypsum and Talc

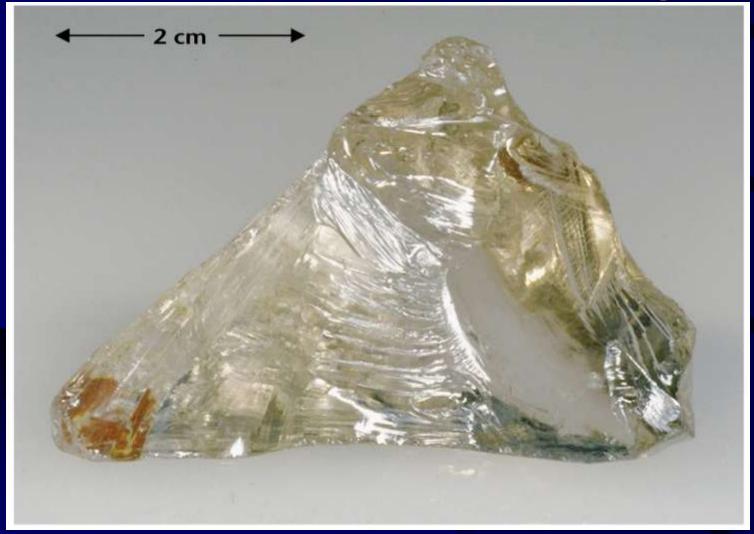
3. Talc and Calcite

What is the luster displayed by this mineral ?

Potassium feldspar


Minerals

Physical properties of minerals 6. Cleavage – tendency of a mineral to break along smooth faces or surfaces 7. Fracture – tendency of a mineral to break along rough, uneven faces or surfaces 8. Specific gravity – unit-less measure comparing density of 1 cc of mineral to 1 cc of water


Does this quartz crystal exhibit crystal form or cleavage faces, why?

Fluorite (left), Halite (center), and Calcite (right): do they show a perfect cleavage?

Quartz with a conchoidal fracture Does this mineral have cleavage?

Mineral Identification

♦ 9. Other properties a.Taste b. Smell c.Elasticity Malleability d. Feel e. f. Magnetism **Double refraction** g. Reaction to hydrochloric acid h. **i**. Radioactivity

B. A few dozen minerals are called the Rock Forming Minerals:

Are common minerals found in all igneous rocks

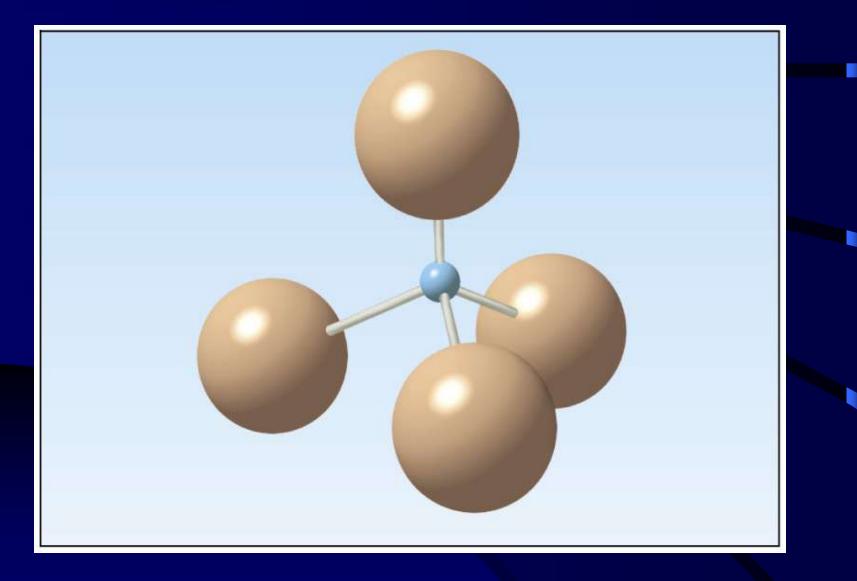
- 1. The eight elements that compose most rock-forming minerals are
 - a. oxygen (O),
 - b. silicon (Si),
 - c, aluminum (Al),
 - d. iron (Fe),
 - e. calcium (Ca),
 - f. sodium (Na),
 - g. potassium (K),
 - h. magnesium (Mg)

Table 2.3 Relative abundance of the most common elements in the continental crust

Element	Approximate Percentage by Weight
Oxygen (O)	46.6
Silicon (Si)	27.7
Aluminum (Al)	8.1
Iron (Fe)	5.0
Calcium (Ca)	3.6
Sodium (Na)	2.8
Potassium (K)	2.6
Magnesium (Mg)	2.1
All others	1.5
Total	100

Source: Data from Brian Mason.

C. Mineral Groups


1. Rock-forming silicates

a. Are the most common mineral group
b.Contain the silicon-oxygen tetrahedron
1. Four oxygen atoms surrounding a much smaller silicon atom

2. Combines with other atoms to form the various silicate structures

Form from a magma or lava (molten rock)

The silicate $(SiO_4)^{-4}$ molecule

Non Silicate Mineral Group

- Major groups
 - Oxides minerals composed of oxygen and some other elements except sulfur, silicon, or carbon. (Hematite, Limonite)
 - Sulfides minerals composed of sulfur and some other elements except oxygen, silicon or carbon. (Galena, Pyrite)
 - Sulfates minerals composed of sulfur and 4 oxygen atoms and some other elements except silicon or carbon. (Gypsum)

Hematite – Oxide Mineral

Galena – Sulfide Mineral

Sulfur – Native Mineral

Fluorite – Halide Mineral

Non Silicate mineral groups

- Major groups
 - Halides minerals composed of combinations of cholrine, bromine, or fluorine with some other elements except oxygen, carbon, sulfur, or silicon. (Halite, Fluorite)
 - Carbonates minerals composed of carbon and oxygen and some other elements except sulfur or silicon. (Calcite, Dolomite)
 - "Native" elements minerals composed of a single element (Sulfur, Graphite)

b. Carbonates

- 1. A major rock-forming group
- 2. Found in the rocks limestone and marble
- c. Halite and gypsum are found in sedimentary rocks
- d. Many have economic value

Some common non-silicate minerals

Halite

Diamonds

- Are made of pure carbon like graphite minerals
- Form at High pressure, high temperature deep underground unlike graphite
- Only 20% of diamonds traded are used in jewelry, the rest goes to industry

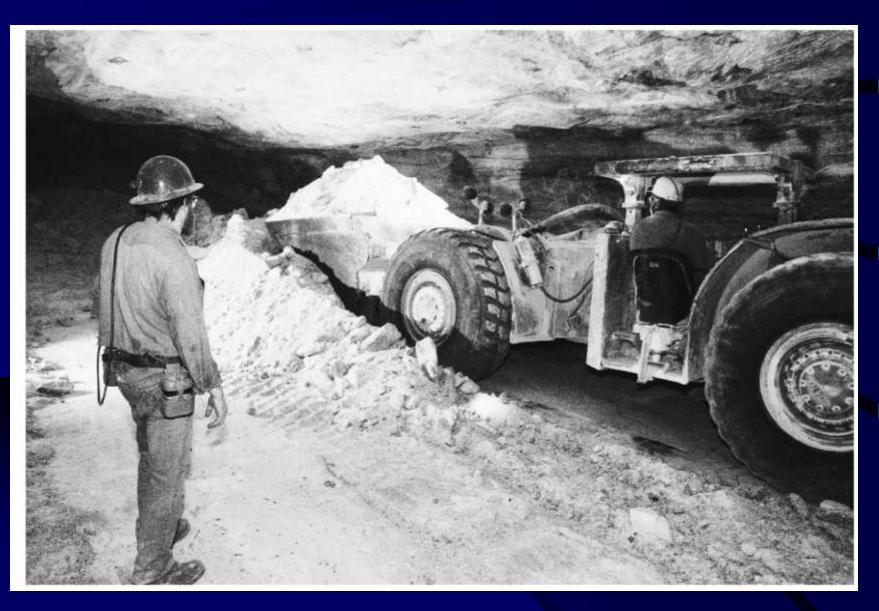
Mining Minerals

- 1. What are minerals used for?
- 2. How can we found them?
- 3. What Earth Scientists look for minerals?
- 4. What are the steps for mineral exploration?
- 5. Are we going to run out of mineral resources?

Minerals

- D. Mineral resources
 - 1. Reserves are already identified deposits
 - 2. Ores are useful metallic minerals that can be mined at a profit
 - 3.Economic factors may change and influence a resource

Steps for Mineral Exploration


***** Exploration Stage:

- 1. Identify target on a Geological map
- 2. Collect rock samples for analysis
- 3. Use core drilling to confirm the presence of deposit underground

Feasibility Study:

- 1. Evaluate the reserves of economic mineral found
- 2. Plan for the exploitation of the resource found

An underground halite (salt) mine

The Bingham copper mine in Utah

